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Abstract  39 

The Chinese loess/palaeosol succession is one of the most comprehensive and intensively studied 40 

archives of Neogene and Quaternary global palaeoclimate events. Its stratigraphic details are widely 41 

recognised to indicate close links to the history and function of the East Asian Winter Monsoon (EAWM) 42 

– one of the most active components of the Earth’s climate system. But the formal meteorological links 43 

between the EAWM and dust emission, both in the present day and in the past, have not been established 44 

and with it, the veracity of the loess record as an indicator of the EAWM questioned.   Here we show that 45 

present day major dust events over northern China, while largely occurring during spring, are 46 



nevertheless ‘conditioned’ by the strength of the preceding EAWM. We also demonstrate, for the first 47 

time, a close link between the occurrence of dust events and the strength of the EAWM. From these 48 

findings, linked to global-scale climate model simulations, we conclude that the Chinese loess succession 49 

provides a convincing proxy record of the strength of the East Asian Winter Monsoon.  50 

 51 

1. Introduction 52 

The stratigraphy of the Chinese Loess Plateau, comprising inter-bedded loess and palaeosol sequences,  53 

provides an iconic Quaternary terrestrial record of East Asian glacial and interglacial events. The ‘Red 54 

Clay’ sequences extend the record into the early Neogene, and through this captures both East Asian 55 

‘inland aridification’ and the on-set of the East Asian monsoon regime. (Ding et al., 1992; Liu and Ding, 56 

1998; Guo et al., 2002; Stevens et al., 2007; An et al., 2014). The Quaternary component of the 57 

succession played a fundamental role in establishing the correlation between the terrestrial and marine 58 

glacial-interglacial records, stressing the loess record’s global significance (Heller and Liu, 1984; Kukla, 59 

1987; Ding et al., 2002; Williams, 2014) This correlation carried the implication that the East Asian 60 

glacial-interglacial scale climate shifts, were captured through dust entrainment, transport, deposition and 61 

post-depositional sediment ‘modification’, which in turn meant that the loess record provides a register of 62 

the function and intensity of the East Asian monsoon (EAM) regime (An et al., 1991; Liu and Ding, 1998; 63 

An et al., 2014) .  64 

 65 

Various loess related proxies have been used to reconstruct monsoon events. The record of  East Asian 66 

Summer Monsoon (EASM) variability has been related to the weathering imprint of inter-bedded 67 

palaeosols  with, traditionally, some emphasis on magnetic susceptibility (e.g., Heller and Liu, 1982; An 68 

et al., 2014). In the reconstruction of the East Asian Winter Monsoon (EAWM) variations, strong claims 69 



have been drawn from  changes in the rates of deposition – mass accumulation rates (MAR) - and loess 70 

grain-size changes, not always without difficulties (Stevens et al., 2007). From these studies has emerged: 71 

(i) the general claim of a strengthening of the EAWM during glacial stages with a significant downturn of 72 

EAWM activity during interglacial stages (e.g. Stevens et al., 2007; Hao et al., 2012; An et al., 2014); and 73 

(ii) the recognition of more short term  stadial-interstadial to  millennial scale events (Porter and An, 74 

1995;  Sun et al., 2010, 2011; An et al., 2014).   75 

 76 

Linked to an understanding of the East Asian component of the Asian monsoon winter regime at a range 77 

of time scales, are far-reaching implications, including the possibility of deciphering possible Atlantic–78 

EAWM and EAWM–Indonesian–Australian Summer Monsoon teleconnections (Sun et al., 2011; 79 

Wyrwoll et al., 2007; Wang et al., 2012; Denniston et al., 2013). The recognition of millennial scale 80 

stronger EAWM events further emphasises the importance of the loess record in pointing to the global 81 

imprint of such events (Porter and An, 1995; Sun et al. 2011; Denniston et al., 2013).  82 

 83 

These palaeoclimate interpretations of the significance of inferred winter loess depositional rates and 84 

grain size changes have been recently cast into doubt by claims that the record of dust events in the 85 

Chinese loess succession does not relate to a stronger EAWM (Roe, 2009; Lu et al., 2011).  The claims 86 

have now entered the more general literature (Williams, 2014:153) and challenge a vast research effort 87 

with far-reaching implications for our understanding of global scale climate teleconnections and drivers.  88 

Roe’s (2009) claims are based on the fact that present-day dust events occur in spring and hence do not 89 

relate to or indicate winter synoptic states. Roe (op. cit.) recognises that such dust events are driven by 90 

strong winds associated with  cyclogenesis and the passage of strong cold fronts, and points to the fact 91 



that such events occur as a result of the breakdown of the Siberian High – the ultimate driver of the 92 

EAWM.  93 

 94 

The details of proposed  EAWM changes, whether in strength and/or frequency, have generally not been 95 

firmly grounded in a framework of the controlling climate drivers. With associated discussions bringing 96 

with them an element of circularity – high mass accumulation rates (MARs) and ‘coarse’ grain-size 97 

indicate a stronger EAWM, and from a stronger EAWM, high MARs and ‘coarse’ grain-sizes can be 98 

expected.  Our objective here is to break this nexus and specifically determine the relationship between 99 

dust events–loess deposition and the strength of the EAWM. We attempt this by focusing on the 100 

controlling climatology of dust events and employ Ocean Atmosphere Global Climate Model simulation 101 

results for selected periods over the last 21,000 years to strengthen our claims.  102 

 103 

2. Cold surges in the climatology of the East Asian winter monsoon 104 

The EAWM dominates the climate of East Asia during the winter months (e.g., Chang et al., 2006) and is 105 

closely associated with the development of a cold core high pressure system over the Siberian-Mongolian 106 

region (Fig. 1).  The strength of the EAWM is defined through the associated surface pressure and/or a 107 

consideration of the details of its dynamic controls (Jhun and Lee, 2004; Li and Yang, 2010).  During the 108 

EAWM, the Siberian High with its central pressure reaching in excess of 1035 hPa, dominates much of 109 

the Eurasian continent;  individual cases of central pressure as high as 1085 hPa have been reported. More 110 

strong northwesterly flows occur at its eastern margins, where the flow separates into one branch directed 111 

eastward into the subtropical western Pacific, and then tending southward in the direction of the South 112 

China Sea. At 500 hPa, a trough (the East Asian Trough) is evident, aligned with the longitudes of Japan. 113 



At 200 hPa, the Polar East Asian Jet is prominent, with its maximum located just southeast of Japan. The 114 

Polar Jet is associated with strong baroclinic instability, large vertical wind shear and cold air advection.  115 

 116 

The cold air ‘excursions’, also described as ‘cold surges’, are channeled by the trough southwards and are 117 

a characteristic feature of the EAWM (Lau and Chang, 1987) that impact strongly on the winter climate 118 

of eastern China. Their path is in part related to relief controls of the Tibetan Plateau, with their effect 119 

extending to the tropics, where they can lead to the flare-up of convective activity over the Maritime 120 

Continent (Chan and Li, 2004).  The recognition of cold-surges as a meteorological feature extends back 121 

to the early part of the last century (Li, 1937; Lu, 1937). They were then termed ‘cold waves’ and were 122 

recognised as being associated with ‘sandstorms’ (Lu, 1937). Lu (op.cit.) described an event in March 123 

1936, which could be traced over much of east China extending into the south and associated with a 124 

regionally extensive sandstorm. 125 

 126 

It is now recognised that the frequency of cold-surges can act as a surrogate for the strength of the 127 

EAWM (i.e. surface pressure) (Zhang et al., 1997; Ding and Sikka, 2006).  For the period 1979 to 1995, 128 

Zhang et al. (1997) found an average annual occurrence of 13 cold surges per year based on the 129 

NCEP/NCA reanalysis data. Using different criteria, Chen et al. (2004) proposed that about 17 events 130 

occur every winter. Cold surges can last from 5 to 14 days (Zhang et al., 1997), hence forming a 131 

significant component of the winter climate of the southern East Asia – South China Sea region. But cold 132 

surges do not necessarily constitute dust depositional events, as emphasised by Roe (2009). In the present 133 

climate, the frequency of large-scale Asian dust events peaks between March and May (Shao and Dong, 134 

2006), with more than 85% of the annual dust storms occurring during spring (Zhu et al., 2008). The 135 

annual number of dust events originating from the Gobi Desert ranges between 20 and 35 (Sun et al., 136 



2001), and given their mainly spring occurrence, they would appear to be a poor indicator of the strength 137 

of the EAWM. 138 

 139 

3. Methods 140 

To establish the relationship between cold air outbreaks in winter (i.e. the strength of the EAWM), and 141 

dust activities in spring, we analysed cold surge events recorded at stations maintained by the China 142 

Meteorological Administration in North China (north of 34°N) over the 41-year time period between 143 

1961 and 2001. Initially, the data-sets employed in this study are from the daily mean surface temperature 144 

recorded at 833 stations across China by the China Meteorological Administration. In order to focus on 145 

northern China, this study examines only the stations that are north of 34°N. Then, all records of station 146 

records north of 34°N were screened for missing data and stations with too many missing values were 147 

removed. A station year is considered  ‘missing’ if more than 1% of the days are missing. After screening, 148 

a total of 280 stations with ‘non-missing’ years during the study period could be retained. Here, a cold 149 

surge event at a single station is defined if the event-temperature drop ∆T exceeds 10°C and the event 150 

minimum temperature Tmin is lower than its 10-day climate mean by -5°C. By averaging and then 151 

normalising the time series for the 280 stations during winter, a cold wave frequency index (CWFI) was 152 

derived. Wei and Lin (2009) provide further details of the calculations involved and Wang and Ding 153 

(2006) and Ma et al. (2008) provide examples of the applications of the criteria derived.  154 

 155 

Corresponding dust event frequencies were obtained from synoptic data from 162 weather stations in 156 

Northern China (data available from the China Meteorological Administration). For these stations, days 157 

with dust events (also generally described as “dust weather”), including dust storms, blowing dust and 158 

dust in suspension, were registered. For an individual station, dust frequency is defined as the total 159 



number of days between March and May in which a dust event is observed. Zhou et al. (2006) provide a 160 

detailed introduction to these data-sets.  161 

 162 

 163 

3. Results 164 

The correspondence between the dust event frequency and CWFI series (Fig. 2) yields a correlation 165 

coefficient of 0.73. The time series show a matching decreasing trend with time, and on detrending both, 166 

the positive correlation of 0.4 is retained. These data clearly suggest that a high winter cold surge 167 

frequency in northern China is accompanied by a high dust event frequency in the following spring. 168 

 169 

In order to provide more details on the likely relationship between dust and cold-surge events, ‘strong’ 170 

(>0.7) and ‘weak’ (<-0.7) CWFI years were selected and composite analyses of the corresponding dust 171 

events in the following spring were carried out. The composite analyses confirm a significant 172 

correspondence between the winter cold surges and spring dust events. The results clearly show that the 173 

CWFI and dust frequency are positively correlated, making it evident that when the winter cold surge 174 

frequency in northern China is high, then the following spring dust event frequency is also high (Fig. 3).  175 

 176 

4. Discussion 177 

The circulation controls of matching high (low) dust/strong (weak) CWFI events are highlighted by the 178 

difference in the spring 500 hPa geopotential height and spring sea level pressure between ‘strong’ and 179 

‘weak’ CWFI years (Fig. 4). In comparing the two composites, the deepening of the Aleutian Low is 180 

prominent and in strong CWFI years, the East Asian Trough is on average, 20 gpm lower, with surface 181 

pressure differing by 2 hPa. During a strong CWFI year (high dust frequency year), the Siberian High is 182 



relatively strong; the Aleutian Low is relatively deep with its western part having a stronger northerly 183 

wind component; the Polar High is strong; the European Shallow Trough is relatively deep; the East 184 

Asian Trough is deep and the Ural Ridge is strong. A conceptual overview of the three-dimensional 185 

structure of the EAWM during strong EAWM years is given in Figure 5. The outlined circulation controls 186 

can be placed into the more general context of hemisphere-scale conditions (Gong et al., 2001; Wei and 187 

Lin, 2009; Park et al., 2011; Chang and Lu, 2012). Gong et al. (2006) established a correlation between 188 

the inter-annual variation of dust storm frequency over northern China and the Arctic Oscillation (AO). A 189 

negative phase of the AO is associated with a deeper East Asian Trough and a strong Siberian High with 190 

associated cold surges in northeast Asia (Gong et al., 2001; Wu and Wang, 2002) – i.e. a strong EAWM. 191 

This reconstruction emphasises that during strong EAWM years, the Siberian High has a relatively high 192 

surface pressure, with the Aleutian Low relatively deep and with its western part having a strong 193 

northerly wind component. The East Asian Trough is deeper with a strong Polar Jet evident in the upper 194 

troposphere. These configurations lead to stronger winter cold air outbreaks followed by dust events in 195 

the following spring. 196 

 197 

The Siberian High forms in response to strong radiative cooling in the lower troposphere, confining it to 198 

the lower levels of the troposphere – below 500 hPa (Panagiotopolous et al., 2005). Consequently, given 199 

these controls and the correspondingly shallow nature of the Siberian High, it is to be expected that it was 200 

significantly enhanced during glacial stages. To support our claim, we use results from a transient 201 

simulation of the last 21,000 years (TraCE-21K – Liu et al., 2009; He et al., 2013) with the coupled 202 

atmosphere–ocean Community Climate System Model Version 3 (CCSM3). Fig. 6 shows the simulated 203 

sea surface pressures over the East Asian region for selected time periods during the last 21,000 years. 204 

The model results indicate a strengthening of the Siberian High during glacial stages, showing 205 



progressive weakening of the Siberian High by 12 ka, with this trend continuing into the Holocene. From 206 

the model results and the present day relationship between the strength of the Siberian High, cold surges 207 

and dust events, the inference of an increase in the frequency of cold surge events during glacial stages 208 

follows.  209 

 210 

Given the clear association of dust events and the strength of the Siberian High (i.e. the EAWM), it 211 

follows that glacial (interglacial) stages were characterised by high (low) loess mass accumulation rates 212 

(MAR), possibly associated with coarser (finer) loess grain-sizes  (e.g. Kohfeld and Harrison, 2003; 213 

Stevens at al., 2007; Sun et al., 2011; Kang et al., 2013; An et al., 2014). In providing a more secure 214 

chronology, Kang et al. (2015) have been able to give more refinement to these claims. They demonstrate 215 

that despite significant variations, all sites considered by them show increased MARs during ~26 to 19 ka, 216 

with notable peaks in some stratigraphic successions during 23 to 19 ka. Generally lower MARs were 217 

recognised for the time period, 19 to 12 ka. These results show a general correspondence with the strength 218 

of the model reconstruction of the Siberian High (Fig. 6), with decreasing strength of the Siberian High 219 

corresponding to lower MARs. In this it should not be overlooked that land surface characteristics can be 220 

a control on dust entrainment and that this may be reflected in MARs. For instance, the distribution of 221 

frozen ground at the Last Glacial Maximum (Liu and Jiang, 2016) is likely to have had an impact on 222 

entrainment rates and hence the ‘matching’ MARs of some loess successions. 223 

 224 

While our model results point to a strengthening of the Siberian High during glacial stages and hence a 225 

stronger EAWM, the degree to which this can be expected to be apparent in loess grain-size variations 226 

may not always be straightforward. It is generally recognised in the Chinese loess literature that grain-size 227 

characteristics are related to source controls, transport paths and wind strength (e.g., Pye, 1987, cited in 228 



An et al., 2014) But despite these complexities, a strong claim exists for a link between the grain-size 229 

characteristics of Chinese loess and the strength of the EAWM (summary in An et al., 2014: 54-57). The 230 

potential importance of such claims is highlighted by the recent findings of Sun et al. (2011). Using the 231 

Gulang and Jinguan loess successions, they argue that grain-size variations over the last ~60,000 years 232 

reflect changes in the strength of the EAWM and draw the conclusion that Atlantic meridional 233 

overturning imprints itself on the EAWM through changes in the westerly circulation that ‘transmits’ this 234 

signal from the North Atlantic to the EAWM region (Sun et al., 2011).  These are very important 235 

inferences that stress the need for focused field and climate modeling work, specifically addressing the 236 

questions of the controls of loess grain-size. A need that is further emphasised by the recent Nie et al. 237 

(2015) claim of the link between Yellow River sediment sources and the development of the Chinese 238 

Loess Plateau.  239 

 240 

5. Conclusions  241 

Given that the strength of the EAWM is positively related to the occurrence of dust events, it follows that 242 

the details of the Chinese loess record serve as valid proxy indicators of the strength of the EAWM. In 243 

this claim, we use the term ‘strength’ of the EAWM in the strict sense, i.e., related to the frequency of 244 

cold surges, which is determined by the northern hemispheric circulation in northeast Asia, with the 245 

strength of the Siberian High, as measured by its central pressure, being a key driver. Accepting this 246 

inference and combining it with the recent advances in loess dating techniques, recognition of regional 247 

depositional patterns, ‘switching’ loess sources and climate modeling, brings with it the potential for a 248 

comprehensive reconstruction and understanding of the dynamic palaeoclimatology of the EAWM over 249 

long time scales and through this, ‘capturing’  wider global scale climate teleconnections and drivers.  250 

 251 
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Figure 1: December/January/February sealevel pressure (mb) – 2000 to 2010  ( 

NCEP/NCAR Reanalysis). 

 

Figure 2: Normalized winter Cold Wave Frequency Index (CWFI; red solid line; red 

marks; unitless), normalized spring dust event frequencies (blue solid line; blue 

marks; unitless), and their linear trends (dash lines) for the period 1961-2001.  

 

Figure 3: Correlation between CWFI and spring dust event frequencies – shaded area 

significant at 95%, 99%, and 99.9% confidence level, respectively: (a) raw data, (b) 

detrended data. 

 

Figure 4: Differences between strong (high dust frequency) and weak (low dust 

frequency) CWFI years: (a) spring 500 hPa geopotential height (unit: gpm),  (b) 

spring sea level pressure (unit: hPa). 

 

Figure 5: Conceptual representation of the synoptic expression of strong EAWM 

years promoting cold surges and the incidence of dust events over northern China. 

 

Figure 6: Winter (DJF) model sea level pressure for selected time periods in the last 

21 000 years . 

 

 



 



 



 



 



 



 



� The Chinese loess/palaeosol succession is one of the most comprehensive and 

intensively studied archives of Neogene and Quaternary global palaeoclimate events.  

� The succession is widely claimed to be linked to the strength of the East Asian 

Winter Monsoon (EAWM), an inference that has been recently challenged. 

� Here we show that present day major dust events over northern China are 

‘conditioned’ by the strength of the preceding EAWM.  

� These findings are related to global-scale palaeoclimate model simulations that 

show a progressive weakening of the EAWM over the last c. 21,000 years. 

� From these findings we confirm that the Chinese loess succession provides a 

convincing proxy record of the strength of the East Asian Winter Monsoon.  

 




