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Abstract

The Chinese loess/palaeosol succession is oneeofmibst comprehensive and intensively studied
archives of Neogene and Quaternary global palaeatd events. Its stratigraphic details are widely
recognised to indicate close links to the historgl function of the East Asian Winter Monsoon (EAWM)

— one of the most active components of the Eadlirsate system. But the formal meteorological links
between the EAWM and dust emission, both in thegmeday and in the past, have not been established
and with it, the veracity of the loess record asnalicator of the EAWM questioned. Here we shbatt

present day major dust events over northern Chinale largely occurring during spring, are
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nevertheless ‘conditioned’ by the strength of thecpding EAWM. We also demonstrate, for the first
time, a close link between the occurrence of dushts and the strength of the EAWM. From these
findings, linked to global-scale climate model siations, we conclude that the Chinese loess suctess

provides a convincing proxy record of the strergftthe East Asian Winter Monsoon.

1. Introduction

The stratigraphy of the Chinese Loess Plateau, deimng inter-bedded loess and palaeosol sequences,
provides an iconic Quaternary terrestrial recordast Asian glacial and interglacial events. ThedR
Clay’ sequences extend the record into the earlggdiee, and through this captures both East Asian
‘inland aridification’ and the on-set of the Eastid&nh monsoon regime. (Ding et al., 1992; Liu andd)i
1998; Guo et al.,, 2002; Stevens et al.,, 2007; Aralet 2014). The Quaternary component of the
succession played a fundamental role in establisthe correlation between the terrestrial and nearin
glacial-interglacial records, stressing the loesrd’s global significance (Heller and Liu, 19&4kla,
1987; Ding et al., 2002; Williams, 2014) This cdaten carried the implication that the East Asian
glacial-interglacial scale climate shifts, were tcapd through dust entrainment, transport, depprsgind
post-depositional sediment ‘modification’, whichturn meant that the loess record provides a gt

the function and intensity of the East Asian moms{AM) regime (An et al., 1991; Liu and Ding, 1998

Anetal., 2014) .

Various loess related proxies have been used tmséaict monsoon events. The record of East Asian
Summer Monsoon (EASM) variability has been relatedthe weathering imprint of inter-bedded
palaeosols with, traditionally, some emphasis @gmetic susceptibility (e.g., Heller and Liu, 1982y

et al., 2014). In the reconstruction of the EastAdVinter Monsoon (EAWM) variations, strong claims
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have been drawn from changes in the rates of depos mass accumulation rates (MAR) - and loess
grain-size changes, not always without difficulti€sevens et al., 2007). From these studies hasyeufie

(i) the general claim of a strengthening of the BM\Wuring glacial stages with a significant downtain
EAWM activity during interglacial stages (e.g. Stes et al., 2007; Hao et al., 2012; An et al., 2044d

(i) the recognition of more short term stadialeirstadial to millennial scale events (Porter &mg

1995; Sun et al., 2010, 2011; An et al., 2014).

Linked to an understanding of the East Asian corepbof the Asian monsoon winter regime at a range
of time scales, are far-reaching implications, udahg the possibility of deciphering possible Atian
EAWM and EAWM-Indonesian—Australian Summer Monso@heconnections (Sun et al., 2011,
Wyrwoll et al., 2007; Wang et al., 2012; Dennistmnal., 2013). The recognition of millennial scale
stronger EAWM events further emphasises the impogaof the loess record in pointing to the global

imprint of such events (Porter and An, 1995; Sual.€2011; Denniston et al., 2013).

These palaeoclimate interpretations of the sigammioe of inferred winter loess depositional rated an
grain size changes have been recently cast intbtdoy claims that the record of dust events in the
Chinese loess succession does not relate to gstr&@AWM (Roe, 2009; Lu et al., 2011). The claims
have now entered the more general literature (8§, 2014:153) and challenge a vast research effort
with far-reaching implications for our understarglof global scale climate teleconnections and dsive
Roe’s (2009) claims are based on the fact thatepteday dust events occur in spring and hence ¢lo no
relate to or indicate winter synoptic states. Roge €it.) recognises that such dust events areulrby

strong winds associated with cyclogenesis andofssage of strong cold fronts, and points to tie fa
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that such events occur as a result of the breakdufwhe Siberian High — the ultimate driver of the

EAWM.

The details of proposed EAWM changes, whethetrength and/or frequency, have generally not been
firmly grounded in a framework of the controllingncate drivers. With associated discussions briggin
with them an element of circularity — high massuseualation rates (MARS) and ‘coarse’ grain-size
indicate a stronger EAWM, and from a stronger EAWINgh MARs and ‘coarse’ grain-sizes can be
expected. Our objective here is to break this seaqud specifically determine the relationship betwe
dust events—loess deposition and the strength @fBAWM. We attempt this by focusing on the
controlling climatology of dust events and emploge@n Atmosphere Global Climate Model simulation

results for selected periods over the last 21,@#03/to strengthen our claims.

2. Cold surgesin the climatology of the East Asian winter monsoon

The EAWM dominates the climate of East Asia duting winter months (e.g., Chang et al., 2006) and is
closely associated with the development of a colé tiigh pressure system over the Siberian-Mongolia
region (Fig. 1). The strength of the EAWM is definthrough the associated surface pressure and/or a
consideration of the details of its dynamic corgr@hun and Lee, 2004; Li and Yang, 2010). Dutireg
EAWM, the Siberian High with its central pressueaching in excess of 1035 hPa, dominates much of
the Eurasian continent; individual cases of cépir@ssure as high as 1085 hPa have been repbtted.
strong northwesterly flows occur at its easterngimst, where the flow separates into one branclcidice
eastward into the subtropical western Pacific, #rah tending southward in the direction of the Sout

China Sea. At 500 hPa, a trough (the East Asiandhpis evident, aligned with the longitudes ofalap



114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

At 200 hPa, the Polar East Asian Jet is promingitl its maximum located just southeast of Japdme T

Polar Jet is associated with strong baroclinicaib#ity, large vertical wind shear and cold air edton.

The cold air ‘excursions’, also described as ‘caldges’, are channeled by the trough southwardsend

a characteristic feature of the EAWM (Lau and Cha887) that impact strongly on the winter climate
of eastern China. Their path is in part relatedel@f controls of the Tibetan Plateau, with theffect
extending to the tropics, where they can lead ®flhre-up of convective activity over the Maritime
Continent (Chan and Li, 2004). The recognitiorcold-surges as a meteorological feature extends bac
to the early part of the last century (Li, 1937; 1937). They were then termed ‘cold waves’ andewer
recognised as being associated with ‘sandstorms’ {©37). Lu (op.cit.) described an event in March
1936, which could be traced over much of east Chixtending into the south and associated with a

regionally extensive sandstorm.

It is now recognised that the frequency of coldgssrcan act as a surrogate for the strength of the
EAWM (i.e. surface pressure) (Zhang et al., 199ingtand Sikka, 2006). For the period 1979 to 1995,
Zhang et al. (1997) found an average annual oauceredf 13 cold surges per year based on the
NCEP/NCA reanalysis data. Using different critezhen et al. (2004) proposed that about 17 events
occur every winter. Cold surges can last from 5l#odays(Zhang et al., 1997), hence forming a
significant component of the winter climate of gwithern East Asia — South China Sea region. Bdt co
surges do not necessarily constitute dust depoaitievents, as emphasised by Roe (2009). In tlsepre
climate, the frequency of large-scale Asian dusinév peaks between March and May (Shao and Dong,
2006), with more than 85% of the annual dust stooewurring during spring (Zhu et al., 2008). The

annual number of dust events originating from trebi@esert ranges between 20 and 35 (Sun et al.,



137 2001), and given their mainly spring occurrenceyttvould appear to be a poor indicator of the gfiten
138 of the EAWM.

139

140 3. Methods

141 To establish the relationship between cold air ks in winter (i.e. the strength of the EAWM)dan
142 dust activities in spring, we analysed cold surgenés recorded at stations maintained by the China
143 Meteorological Administration in North China (norti 34°N) over the 41-year time period between
144 1961 and 2001. Initially, the data-sets employethis study are from the daily mean surface tentpeza
145 recorded at 833 stations across China by the QWigtaorological Administration. In order to focus on
146 northern China, this study examines only the statiihhat are north of 34°N. Then, all records oficta
147 records north of 3N were screened for missing data and stations tedhmany missing values were
148 removed. A station year is considered ‘missinghdre than 1% of the days are missing. After sérggn
149 a total of 280 stations with ‘non-missing’ yearsidg the study period could be retained. Here, ld co
150 surge event at a single station is defined if thenetemperature dropT exceeds 1T and the event
151 minimum temperature .}, is lower than its 10-day climate mean byC5 By averaging and then
152 normalising the time series for the 280 stationsnduwinter, a cold wave frequency index (CWFI) was
153 derived. Wei and Lin (2009) provide further detaiflsthe calculations involved and Wang and Ding
154 (2006) and Ma et al. (2008) provide examples ofayications of the criteria derived.

155

156 Corresponding dust event frequencies were obtaireed synoptic data from 162 weather stations in
157 Northern China (data available from the China Meikagical Administration). For these stations, days
158 with dust events (also generally described as “duesither”), including dust storms, blowing dust and

159 dust in suspension, were registered. For an indaligtation, dust frequency is defined as the total
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number of days between March and May in which & dusnt is observed. Zhou et al. (2006) provide a

detailed introduction to these data-sets.

3. Results

The correspondence between the dust event frequamtyCWFI series (Fig. 2) yields a correlation

coefficient of 0.73. The time series show a matghdacreasing trend with time, and on detrending,bot

the positive correlation of 0.4 is retained. Thelsga clearly suggest that a high winter cold surge

frequency in northern China is accompanied by & Higst event frequency in the following spring.

In order to provide more details on the likely telaship between dust and cold-surge events, ‘gtron
(>0.7) and ‘weak’ (<-0.7) CWFI years were selected composite analyses of the corresponding dust
events in the following spring were carried out.eTkomposite analyses confirm a significant
correspondence between the winter cold surges pumgsdust events. The results clearly show that th
CWFI and dust frequency are positively correlateaking it evident that when the winter cold surge

frequency in northern China is high, then the fwelleg spring dust event frequency is also high (Big.

4. Discussion

The circulation controls of matching high (low) tfstrong (weak) CWFI events are highlighted by the
difference in the spring 500 hPa geopotential heggid spring sea level pressure between ‘strond’ an
‘weak’ CWFI years (Fig. 4). In comparing the twongoosites, the deepening of the Aleutian Low is
prominent and in strong CWFI years, the East AJiesugh is on average, 20 gpm lower, with surface

pressure differing by 2 hPa. During a strong CW&ary(high dust frequency year), the Siberian Hggh i
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relatively strong; the Aleutian Low is relativelyeeb with its western part having a stronger nolgher
wind component; the Polar High is strong; the Eesop Shallow Trough is relatively deep; the East
Asian Trough is deep and the Ural Ridge is strdhgonceptual overview of the three-dimensional
structure of the EAWM during strong EAWM years igsan in Figure 5. The outlined circulation controls
can be placed into the more general context of $igmere-scale conditions (Gong et al., 2001; Wei and
Lin, 2009; Park et al., 2011; Chang and Lu, 20@&&)ng et al. (2006) established a correlation betwee
the inter-annual variation of dust storm frequeaggr northern China and the Arctic Oscillation (A®)
negative phase of the AO is associated with a ddeast Asian Trough and a strong Siberian High with
associated cold surges in northeast Asia (Gong,e091; Wu and Wang, 2002) — i.e. a strong EAWM.
This reconstruction emphasises that during stroAWHK years, the Siberian High has a relatively high
surface pressure, with the Aleutian Low relativelgep and with its western part having a strong
northerly wind component. The East Asian TrougHbasper with a strong Polar Jet evident in the upper
troposphere. These configurations lead to stromgeter cold air outbreaks followed by dust evemts i

the following spring.

The Siberian High forms in response to strong tagiacooling in the lower troposphere, confiningat

the lower levels of the troposphere — below 500 {HRaagiotopolous et al., 2005). Consequently,rgive
these controls and the correspondingly shallowreatfithe Siberian High, it is to be expected thatas

significantly enhanced during glacial stages. Tppsut our claim, we use results from a transient
simulation of the last 21,000 years (TraCE-21K 4 Et al., 2009; He et al., 2013) with the coupled
atmosphere—ocean Community Climate System Modetidier3 (CCSM3). Fig. 6 shows the simulated
sea surface pressures over the East Asian regicsefected time periods during the last 21,000 srear

The model results indicate a strengthening of thigeran High during glacial stages, showing
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progressive weakening of the Siberian High by 12Aith this trend continuing into the Holocene. iro
the model results and the present day relationséiyween the strength of the Siberian High, coldesir
and dust events, the inference of an increaseerfrédguency of cold surge events during glaciajeta

follows.

Given the clear association of dust events andsttength of the Siberian High (i.e. the EAWM), it
follows that glacial (interglacial) stages were reftderised by high (low) loess mass accumulatidesra
(MAR), possibly associated with coarser (finer)deeggrain-sizes (e.g. Kohfeld and Harrison, 2003;
Stevens at al., 2007; Sun et al., 2011; Kang e8l3; An et al., 2014). In providing a more secur
chronology, Kang et al. (2015) have been ableve giore refinement to these claims. They demomstrat
that despite significant variations, all sites ¢dased by them show increased MARs during ~26 t&éd,9
with notable peaks in some stratigraphic successtluring 23 to 19 ka. Generally lower MARs were
recognised for the time period, 19 to 12 ka. Theesalts show a general correspondence with thegttre

of the model reconstruction of the Siberian Higig(), with decreasing strength of the SiberiagtHi
corresponding to lower MARSs. In this it should et overlooked that land surface characteristicsbean
a control on dust entrainment and that this mayeflected in MARs. For instance, the distributidn o
frozen ground at the Last Glacial Maximum (Liu ahidng, 2016) is likely to have had an impact on

entrainment rates and hence the ‘matching’ MARsooifie loess successions.

While our model results point to a strengtheninghaf Siberian High during glacial stages and hence
stronger EAWM, the degree to which this can be etqubto be apparent in loess grain-size variations
may not always be straightforward. It is generafigognised in the Chinese loess literature thahgriae

characteristics are related to source controlasprart paths and wind strength (e.g., Pye, 198&d én
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An et al., 2014) But despite these complexitiestrang claim exists for a link between the grairesi
characteristics of Chinese loess and the strergtredEAWM (summary in An et al., 2014: 54-57). The
potential importance of such claims is highlightadthe recent findings of Sun et al. (2011). Udling
Gulang and Jinguan loess successions, they argigyrihin-size variations over the last ~60,000 year
reflect changes in the strength of the EAWM andwdithe conclusion that Atlantic meridional
overturning imprints itself on the EAWM through cigges in the westerly circulation that ‘transmitsst
signal from the North Atlantic to the EAWM regiosyn et al.,, 2011). These are very important
inferences that stress the need for focused fiett dimate modeling work, specifically addressihg t
questions of the controls of loess grain-size. Adhthat is further emphasised by the recent Nial.et
(2015) claim of the link between Yellow River seéim sources and the development of the Chinese

Loess Plateau.

5. Conclusions

Given that the strength of the EAWM is positivedyated to the occurrence of dust events, it follthved
the details of the Chinese loess record serve las pioxy indicators of the strength of the EAWM |
this claim, we use the term ‘strength’ of the EAWiMthe strict sense, i.e., related to the frequewicy
cold surges, which is determined by the northemmiggheric circulation in northeast Asia, with the
strength of the Siberian High, as measured byetdral pressure, being a key driver. Accepting this
inference and combining it with the recent advanpel®ess dating techniques, recognition of regiona
depositional patterns, ‘switching’ loess sourced alimate modeling, brings with it the potential f@
comprehensive reconstruction and understandingeoftiynamic palaeoclimatology of the EAWM over

long time scales and through this, ‘capturing’ evidlobal scale climate teleconnections and drivers
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marks; unitless), and their linear trends (dasésljrfor the period 1961-2001.
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significant at 95%, 99%, and 99.9% confidence lenedpectively: (a) raw data, (b)

detrended data.

Figure 4: Differences between strong (high dugjdescy) and weak (low dust
frequency) CWFI years: (a) spring 500 hPa geopmtemeight (unit: gpm), (b)

spring sea level pressure (unit: hPa).

Figure 5: Conceptual representation of the synaptpression of strong EAWM

years promoting cold surges and the incidence sf e\ents over northern China.

Figure 6: Winter (DJF) model sea level pressuresébected time periods in the last

21 000 years .
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* The Chinese loess/palaeosol succession is onéeofniost comprehensive and
intensively studied archives of Neogene and Quatgrglobal palaeoclimate events.

* The succession is widely claimed to be linkedhe strength of the East Asian
Winter Monsoon (EAWM), an inference that has besaently challenged.

* Here we show that present day major dust events owrthern China are
‘conditioned’ by the strength of the preceding EAWM

* These findings are related to global-scale palasate model simulations that
show a progressive weakening of the EAWM over #s¢ ¢. 21,000 years.

* From these findings we confirm that the Chineses$osuccession provides a

convincing proxy record of the strength of the Eesian Winter Monsoon.





